
 

iFPGA - Intermittent Intelligent FPGA 
Platform 
Design Document 

 

sdmay20-38 

Client: Henry Duwe 

Advisers: Henry Duwe 

 

 

Team Members/Roles 

Justin Sung - Embedded Systems Engineer 

Zixuan Guo - Systems Diagram Expert 

Jake Meiss - Electrical Engineer 

Andrew Vogler - FPGA Design Engineer 

Jake Tener - Software Technician 

 

 

Team Email: sdmay20-38@iastate.edu 

Team Website: http://sdmay20-38.sd.ece.iastate.edu 

 

 

 

 



 

Executive Summary 

 
Engineering Standards and Design Practices 
Hardware and software we will use in this project: 

● Powercast P2110b RF Energy Harvester 
○ RF to DC Converter 
○ Boost Converter 
○ Voltage Monitor 

● FPGA Circuit Board 
○ MicroSemi’s Igloo nano AGLN250V2 

● Microphone 
○ MEMS microphone 

● Capacitor 
○ Electrostatic double-layer capacitor 

● Regulators 
○ Boost and Buck converters to manage voltage to the load 

● Neural Network  
○ Tensorflow Lite Model with 3 fully connected layers 

● Microcontroller 
○ TI’s MSP430FR5994 

Engineering Standards we are applying to our project from the  IEEE Code of Ethics: 

● Honesty about the functionality and usefulness (#’s 3 & 6) 
○ Intellectual integrity for previous work is necessary for eventual published research 

on the platform 
● Emphasis on Teamwork (#’s 7, 8, & 9) 
● To make the highest quality product within our capability (#’s 5 & 6) 

 

Summary of Requirements 

● Design batteryless PCB-based FPGA system 
● FPGA performing computation on low power 
● Design application that can be accelerated onto the FPGA 
● Accurate neural network predictions 
● Data exportable by UART 
● Ability to checkpoint progress in a program 

○ Intermittent execution on an FPGA platform with frequent power cycling 

Applicable Courses from Iowa State University Curriculum  
● CPRE488 
● CPRE381 

SDMAY20-38     1 
 



 

● EE330 
● CPRE281 
● CPRE288 

 

New Skills/Knowledge acquired that was not taught in courses 
List all new skills/knowledge that your team acquired which was not part of your Iowa State 
curriculum in order to complete this project: 

● Using Libero (an FPGA design tool) 
● How to do independent research 
● IP-Block research 
● Machine Learning 
● Python 
● C++ 
● Neural Networks 
● EAGLE 
● PCB Layout Design 
● Sound Parsing and Analysis 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SDMAY20-38     2 
 



 

Table of Contents 
1 Introduction 6 

Acknowledgement 6 

Problem and Project Statement 6 

Operational Environment 6 

Requirements 6 

Intended Users and Uses 7 

Assumptions and Limitations 7 

Expected End Product and Deliverables 7 

2. Specifications and Analysis 7 

Proposed Design 7 

Design Analysis 13 

Development Process 13 

Design Plan 13 

3. Statement of Work 14 

3.1 Previous Work And Literature 14 

3.2 Technology Considerations 14 

3.3 Task Decomposition 15 

3.4 Possible Risks And Risk Management 15 

3.5 Project Proposed Milestones and Evaluation Criteria 15 

3.6 Project Tracking Procedures 16 

3.7 Expected Results and Validation 16 

4. Project Timeline, Estimated Resources, and Challenges 16 

4.1 Project Timeline 16 

4.2 Feasibility Assessment 18 

4.3 Personnel Effort Requirements 18 

4.4 Other Resource Requirements 20 

4.5 Financial Requirements 20 

5. Testing, and Implementation 20 

SDMAY20-38     3 
 



 

Interface Specifications 20 

Hardware and software 20 

Functional/Non-Functional Testing 21 

Process 23 

6. Results 24 

6.1 Hardware 24 

6.2 Software 31 

6.3 FPGA and MCU System 35 

7. Closing Material 37 

7.1 Conclusion 37 

semester 1 37 

semester 2 38 

7.2 References 38 

7.3 Appendices 38 

I: Operation Manual 38 

II: Alternative / Initial Versions of the Design 49 

III: Other considerations 50 

IV: Code (optional) 50 

V: References 51 
 

List of figures/tables/symbols/definitions  

2.1 Top level Diagram 9 

2.1 Embedded System Architecture Diagram 10 

2.1 Software Design Diagram 10 

2.2 Software Acceleration Diagram 11 

5.4 Test Plan Flow Diagram 23 

6.11 Power Cast Energy Harvester Schematic 25 

6.12 Regulators Schematic 25 

6.13 Schematic for the Master MSP430 Microcontroller 26 

6.14 Schematic for the Microsemi Igloo Nano FPGA 26 

SDMAY20-38     4 
 



 

6.15 Schematic of the slave MSP430 Microcontroller 27 

6.16 Schematic of the Capacitor Bank 27 

6.17 Schematic of switches, reset, and oscillator control circuits 28 

6.18 Schematic of Header 28 

6.19 EAGLE Printed Circuit Board Layout Design 29 

6.20 Final Fabricated Printed Circuit Board 30 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SDMAY20-38     5 
 



 

1 Introduction 

1.1 ACKNOWLEDGEMENT 

Henry Duwe - Advised and set concrete goals for the team to work towards. 

Narayanan Vishak - Assisting in the hardware design development. 

Sahu Rohit - Assisting in the software design and development. 

1.2 PROBLEM AND PROJECT STATEMENT 

Develop a hardware and software solution to intermittently execute a program targeted on a low 
power FPGA platform that can withstand multiple power cycling events.  

 

As IoT applications become more prolific and integrated into society, the demand for more 
efficient and powerful devices grow.  Addressing these extreme resource requirements and 
computational demand results in stress on the power supply.  Batteries are the predominant source 
of power for IoT devices.  However, batteries are unsustainable and require maintenance and 
replacement relatively often in the life span of devices.  To confront these inadequate power 
sources, Self-harvesting power technology shows promise.  They require little to no human 
intervention upon deployment and have significantly longer lifespans compared to batteries. 
Self-harvesting device can  

 

The iFPGA is a low power designed FPGA platform powered completely by the powercast harvester 
device to intermittently execute an audio recognition program with resilience against frequent 
power cycling events.  If successful, the iFPGA prototype will uncover novel design solutions to 
address unreliable power sources, and broaden the feasible areas where IoT can be applied.  The 
prototype will lead to more advanced designs that will build and improve upon any shortcomings 
of the final prototype.  For our research, the iFPGA was targeted at performing audio recognition 
and classification. 

1.3 OPERATIONAL ENVIRONMENT 

The iFPGA will be used within the lab environment, so environmental considerations were low 
priority.  

 

1.4 REQUIREMENTS 

Functional Requirements  

● Batteryless 
○ Power provided by means of RF Energy Harvesting 

● Data transmission off-chip 
○ UART 

● Program execution that can pause and continue while power toggling 
○ Checkpointing in the software 

Non-Functional Requirements 

SDMAY20-38     6 
 



 

● Low Power 
○ Must be able to detect, perform computations, and transmit data at low power 

● Little to no human intervention after deployment 
 

1.5 INTENDED USERS AND USES 

The product is designed for analyzing audio based data on an FPGA with an emphasis on low 
power design.  It can be applicable to areas such as IoT research and a prototype for developers 
to expand the study and project further.  
 

1.6 ASSUMPTIONS AND LIMITATIONS 

Assumptions 

● This project will be used by Dr. Duwe and his research team. 
● The end result of the project is meant to be a prototype design for research, not a 

marketable project. 

Limitations 

● Cost of prototype shall not exceed 200 USD 
● Battery-less 

 

1.7 EXPECTED END PRODUCT AND DELIVERABLES 
1) A PCB prototype that can accelerate a portion of the audio recognition pipeline that 

demonstrates the ability to complete the program successfully with frequent power cycling 
events throughout its execution.  It will be powered by a radio frequency harvester feeding 
into a capacitor bank.  A demo to show these capabilities suffice in a successful end 
product.  

2) Comprehensive documentation describing and explaining parts and how to interface with 
the platform.  Justification of our design choices will be included with the end product 
prototype.  

2. Specifications and Analysis 

2.1 PROPOSED DESIGN 

Our target solution is an FPGA powered by RF harvesting that can perform simple computations 
within a low power cycle. We will be using the Powercast RF energy harvester which will provide 
enough power to run the FPGA and the MCU ( MSP430). The first MCU will handle MFCC 
generation and hold the digital audio data to be analyzed.  The FPGA, Microsemi’s Igloo Nano, will 
be able to operate on low power in order for this to be possible. Our FPGA will perform part of our 
software computation: matrix multiplication; and speed it accelerating inference on the FPGA. The 
FPGA will receive the scaled MFCC coefficients, matrix multiply them against the fixed weights 
determined by the neural network, and the intermediate data produced will be sent to the second 
MCU for storage and assembly of the prediction vector.  

 

SDMAY20-38     7 
 



 

Power Management: 

● In order to fulfill the requirement for our project to be batteryless, we must begin with 
energy harvesting. We will be using a 3-watt, 915 MHz wifi transmitter that will be 
providing the power to our system. This radio frequency signal will be received by a 
directional patch antenna and then converted to DC power by a Powercast P2110B RF 
energy harvester. At this point, the converted DC power will be stored in the capacitor. The 
capacitor node will be connected to both a boost converter and a voltage monitor.  The 
voltage monitor will supervise the voltage at the capacitor node, checking for an upper 
threshold of 1.25V and a lower threshold of 1.02V. The capacitor will begin charging up 
until the upper voltage threshold is reached, triggering the voltage to be amplified by a 
boost converter which in turn will provide power to the MSP430 as well as 2 discrete 
voltage regulators. The MSP430 will control the two regulators that will then provide 
power to the Igloo Nano FPGA when computations are necessary. The capacitor will be 
discharged as it provides power to the load (Microcontroller and FPGA) until the capacitor 
voltage hits the lower threshold of 1.02V in which power to the load is lost and the storage 
device begins to recharge. Since this process will be continuous, power to the load will be 
intermittent which must be taken into account in the remainder of the design. 

 

FPGA/Microcontroller Design: 

● When powered on by the MSP430, the Igloo Nano will boot and begin its computation. 
The MSP430 receives digital audio data and performs MFCC generation.  Once the final 
scaled MFCC has been generated, it passes it through the neural network, which is a series 
of matrix multiplications between the scaled MFCC and the fixed weights of each layer. 
These matrix multiplications are what the FPGA accelerates.  The MSP430 sends the MFCC 
data to the FPGA, where it performs a pipelined matrix multiplication via a 
multiply-accumulate hardware design with the fixed weights pre loaded into its 
non-volatile memory, in which it sends the intermediate data to the second MSP430 for 
storage.  Once all of the matrix multiplication operations have concluded, the FPGA 
passses the final prediction vector to the first MSP430 to be transmitted out of the system. 
The second MSP430’s role is to store all of the intermediate data produced by the FPGA 
and the weights from the neural network. 

 

● The choice to use the MSP430 as our microcontroller was from a suggestion from Dr. 
Duwe. Although we could have searched for others, this was his recommendation given his 
experience in the area and so we thought that to be the best microcontroller for the job. 
Our FPGA, the Igloo Nano, was chosen after looking at the different products between 
Lattice and Microsemi. We first came to the conclusion to use a Microsemi product 
because we verified that we could use Libero, an FPGA design tool, for free. We also found 
that Lattice was more vague on the product descriptions, making Microsemi a better 
company for the job. We then narrowed down to the Nano because it is low power and 
because it still had the most computation power given it’s low power. 
 

 

 

SDMAY20-38     8 
 



 

Software: 

● Since our project entails audio classification, we developed a neural network for our device 
to use in inference with each new sound. In order to do this, we used UrbanSound 8k’s 
dataset of 8,732 sounds with 10 unique classifications. Then we sample them into a digital 
time series and generate spectrograms of each sound  (an array of floats indicating its 
frequency, amplitude, and change in time). With this data, we are able to train a model to 
know what type of sound correlates to a given label. 

● Upon receiving a new sound, our software will sample the sound, then generate its 
spectrogram, and then use this in inference with our model’s weights in order to predict 
the class of the sound (Fig 2.3). This inference is then going to be transmitted off of the 
device to a target system.  

● Software has been developed in Python for modular testing before integration, then 
replicated in C++ for acceleration onto hardware, this brought its own challenges that will 
be discussed later in this document. 

● When accelerating and uploading the software to the devices, the sound analysis (sampling 
and MFCC generation) will be loaded onto one MSP430, and the trained model onto the 
other. The Igloo Nano will be passed weights of the model from one MSP430, and the 
calculated MFCC coefficients from the other, and perform the matrix multiplication and 
build the output vector (the success of this implementation has been affected by Covid-19.)  

Output: 

● The Igloo Nano and MSP430 will conduct this software on a given segment of sound, then 
transmit a resultant string including the sound’s classification, and a date time object of 
when the sound was heard. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SDMAY20-38     9 
 



 

Top Level Diagram   

 

 

Figure 2.1 Top level design diagram  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SDMAY20-38     10 
 



 

Embedded System Architecture Diagram  

 
 

Figure 2.2  Embedded System Architecture design diagram  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SDMAY20-38     11 
 



 

Software Process (PC Model Testing) 

 

 

Figure 2.3  Software design diagram  

 

SDMAY20-38     12 
 



 

Software Acceleration Process 

 

 

 
Figure 2.4  Software acceleration diagram  

 

 

2.2 DESIGN ANALYSIS 

Strengths 

● Performing computations on an indirect powered platform 
● Experience with Test Plans 

Weaknesses 

● Possibility of insufficient energy harvested resulting in an inability to provide power to the 
load 

● Low power design provides limitations to computational intensity and memory capabilities 
● Lack of data security on the platform 
● Hardware specifically targeted to perform acceleration on one applications, not flexible for 

different applications 
 

2.3 DEVELOPMENT PROCESS 

We are using a waterfall-agile mix for our workflow. Since many of the tasks in the early phase we 
are walking into with a lot of unknowns, we have to go back and forth with decisions as we learn 
more about FPGA design. We carry out a new set of tasks each week. Some of the smaller decisions 
don’t have a specific due date (hence the waterfall method) but the bigger decisions, such as 
choosing an FPGA have a more concrete deadline (more of the agile mindset).  

2.4 DESIGN PLAN 

Once the technology and materials have been secured, we plan to employ a design process similar 
to integration by parts and modular design.  For both the hardware and software, the first step will 
be to create and design the modular parts of the project (e.g. read-and-write functionality module, 
hardware accelerator module, FPGA-to-microcontroller interface module, etc. ) and verify that they 
work as intended through rigorous testing.  Once each module has been created and verified for 
functionality, the next step would be to integrate these modules together and verify functionality of 
the combined modules.  Repeating this integration and verification until all modules are combined 
into a single, fully integrated design.  

SDMAY20-38     13 
 



 

Modular design will streamline the progress made since errors will be corrected upon discovery 
rather than allowing them to propagate further into the design and complicating the debugging 
process.  Integration by parts will also facilitate this streamlined progress since logical errors will be 
caught upon testing the modules and ensures that errors will be corrected at the source and not be 
allowed to propagate downstream. 

3. Statement of Work 

3.1 PREVIOUS WORK AND LITERATURE 

Embedded System for Acquisition and Enhancement of Audio Signals 
Paper 

This paper describes previous research into an FPGA-based accelerator targeted at audio capture 
and filtering.  It describes the embedded system architecture, signal processing steps and signal 
enhancement that can be accelerated using hardware.  The system architecture was helpful in 
formulating the eventual hardware diagram.  The link to the paper is provided in the appendix. 

 

Efficient Processing of Deep Neural Networks: A Tutorial and Survey Paper 

This paper went into the details of current efforts and strategies in accelerating neural network 
computations on FPGAs and resources-exhaustible hardware platforms.  It states that the portion 
with the highest potential to be hardware accelerated in a neural network pipeline is the 
multiply-and-accumulate (MAC) operations.  These operations have also been shown to result in 
significant reduction in energy consumption. 

 

Market survey comparisons of components for the platform explained in the previous 
sections in detail. 

Self-producing energy devices exist, but none that try to achieve something as costly, both in power 
and computational power, such as what the iFPGA proposes.  No other device in its class can 
sustain itself solely by radio-frequency derived power while attempting costly computations. 

 

3.2 TECHNOLOGY CONSIDERATIONS 

Low power and budget are the two main factors that guided the technology choices made.  Since 
the end product is a prototype to assess the feasibility of such a platform, the budget was restricted 
and considerations were made in light of it.  The low power constraint also affected the technology 
choices. 

 

SDMAY20-38     14 
 



 

3.3 TASK DECOMPOSITION 

● Decide on components that fit the project constraints and functional/non-functional 
requirements. 

○ Perform market survey with limitation considerations. 
● Design the hardware platform. 

○ Research into existing hardware architecture targeted at audio acceleration. 
○ Design and verify portions of the completed hardware architecture and integrate 

together until the full system has been created and verified. 
● Design the software to handle the audio pipeline acceleration and intermittent 

programming. 
○ Design and develop the software to be integrated with the hardware platform. 
○ Modify the software to handle intermittent programming. 

● Integrate (2) and (3). 
● Perform system-level test plan 

 

3.4 POSSIBLE RISKS AND RISK MANAGEMENT 

● FPGA low power boot sequence 
○ Given the nature of low power applications, we still need to make sure the RF 

harvester is feeding the FPGA enough power to boot on the FPGA and run 
computations without shutting down mid-computation. 

● FPGA maximum power consumption  
○ When the FPGA is boosting, there will be an inrush current that goes through each 

component on the FPGA, this step may consume a lot of power in the capacitor. 
We need to do more research on the calculation on capacitor and consumption. 

● FPGA-Microcontroller link 
○ There is very little documentation about how to send data back and forth between 

FPGAs and Microcontrollers. We are going to have very little help when figuring 
out how to get the data through even though the data being transferred is simple. 

● The Data-pipeline on FPGA and I/O resources 
○ Data will pass through the data-pipeline on the FPGA needs to assign each I/O and 

memory resources, we need to make sure we have a good management on using 
these resources and optimize the data pipeline or its structure. 
 

3.5 PROJECT PROPOSED MILESTONES AND EVALUATION CRITERIA 

Key Milestones: 

● Component finalization list 
● FPGA component integration 
● Power analysis and component integration 
● Intermittent programing design 
● Completed hardware and software integration 

 

SDMAY20-38     15 
 



 

3.6 PROJECT TRACKING PROCEDURES 

Weekly group meetings, weekly advisor meetings, and weekly work period meetings.  

 

3.7 EXPECTED RESULTS AND VALIDATION 

Originally, our expected results and validation was to deploy the platform in the field and be able 
to: (1) capture audio from its environment, (2) perform computation on the data, and (3) transmit 
the results from the computation to an external device.  Frequent demonstrations will guarantee 
that each milestone is functioning as expected and that progress is being made in the right 
direction and in the right way. 

However, due to COVID-19, we were not able to meet these expectations.  Instead, we readjusted 
our end goal: Proving that our system has the capabilities to perform the feats that we propose via 
simplified prototype designs.  These simplified designs would entail: (1)  a hardware accelerator 
design, (2) a functioning software pipeline, (3) PCB design, and (4) communication between the 
FPGA and the MCU. 

4. Project Timeline, Estimated Resources, and Challenges 

 

4.1 PROJECT TIMELINE 

Note: Highlighted section was the plan until school went online 

 

Task Name Start Date End Date 

Semester 1 

All Groups 

Explore previous work Aug 30th, 2019 Sept 6th, 2019 

Embedded System 

Research and choose FPGA Sept 6th, 2019 Sept 27th, 2019 

Prototype FPGA Programs Sept 27th, 2019 Oct 18th, 2019 

IP-Block Research Analysis Oct 18th, 2019 Nov 15th, 2019 

Matrix Multiplication Research and Prototyping Nov 15th, 2019 Dec 6th, 2019 

Software 

Research Possible Applications Sept 13th, 2019 Sept 27th, 2019 

SDMAY20-38     16 
 



 

Research Neural Networks and Machine 
Learning 

Sept 27th, 2019 Oct 3rd, 2019 

Develop and Train UrbanSound 8k Neural 
Network (Keras Model) 

Oct 3rd, 2019 Oct 17th, 2019 

Develop Testing Script for Neural Network Oct 17th, 2019 Oct 25th, 2019 

Quantize UrbanSound 8k Keras Model for 
Acceleration (Converts to TfLite Model) 

Oct 25th, 2019 Nov 8th, 2019 

Develop Testing Script for TfLite Model Nov 8th, 2019 Nov 15th, 2019 

Upload TfLite Model onto MSP430 and Run Test 
Case Inference 

Nov 15th, 2019 Current 

Research Sound Analysis with Intention to 
Convert Python Libraries to C Code 

Nov 29th, 2019 Current 

Power 

Research of RF Energy Harvesting Platform Sept 6th, 2019 Sept 27th, 2019 

FPGA Power Consumption Analysis  Sept 16th, 2019 October 25th, 2019 

Power Management Design Oct 18th, 2019 Current 

System Level Architecture Diagram Nov 25th, 2019 Current 

Other: 

Presentation & Design Doc Preparation Nov 22nd, 2019 Dec 9th, 2019 

Semester 2 

Integration 

PCB Design Completion and Order Jan 13th, 2020 Feb 7th, 2020 

Transfer Python Code to MSP430 Jan 13th, 2020 Jan 24th, 2020 

Fourier Transformations (FPGA Software) Jan 13th, 2020 Jan 24th, 2020 

Sound Spectrogram Generation Jan 24th, 2020 Feb 14th, 2020 

Data Transfer Jan 24th, 2020 Mar 13th, 2020 

Testing 

Input .wav files for hardware/electrical testing Feb 14th, 2020 Mar 13th, 2020 

SDMAY20-38     17 
 



 

Refining 

Tweak hardware/electrical based on testing Mar 13th, 2020 Apr 3rd, 2020 

Tweak software based on testing Apr 3rd, 2020 Apr 17th, 2020 

Other 

Buffer Time / Documentation Updating Apr 17th, 2020 Apr 27th, 2020 

Final Project Presentation Preparation  Apr 27th, 2020 May 1st, 2020 

New Plans after Spring Break 

Revise Plans Mar 23rd, 2020 Mar 25th, 2020 

Finish individual components / Figure out what 
can be integrated given circumstances 

Mar 25th, 2020 Apr 8th, 2020 

Make final documentation and presentation Apr 8th, 2020 Apr 22nd, 2020 

Revise documentation and presentation Apr 22nd, 2020 Apr 30th, 2020 

 

4.2 FEASIBILITY ASSESSMENT 

Our realistic projection of the project will be a custom PCB with the Igloo nano and the MSP430. 
Given audio data, it will be able to generate a scaled spectrogram, pass it through the neural 
network to obtain the inference data, and be able to classify the audio data.  The Igloo nano will 
become a hardware accelerator for the matrix multiplication used in generating the inference data. 

 

4.3 PERSONNEL EFFORT REQUIREMENTS 

Our personal effort will be very high throughout the year. This has been deemed a difficult senior 
project by our advisor, so it will be tough for us. We will be spending a very high volume of time 
during the fourth cycle (Build individual pieces, test, and demo) as we get ready to show off our 
project ideas in order to begin prototyping. 

 

As semester two has changed our end results, our effort on our final product has stayed high. 
Although we are not able to test and demo our integrated product we have put a very high 
emphasis on completing the individual components and having them well documented. 

 

 

SDMAY20-38     18 
 



 

Name Overall Contributions to the Project 

Jacob Tener Neural Network Research, Analysis and 
Application. Constructed quantized Urban 
Sound 8k Model. Sound Parsing and Analysis. 
Applied CNN to microcontroller. 

Jake Meiss Energy harvesting research, power 
management design, system level architecture, 
Electrical Schematics, PCB Design 

Andrew Vogler FPGA Market Research, Building FPGA 
example projects, IP-Block Research, 
Requirements, Schedule Flow 

Zixuan Guo FPGA Testing research and deal with the data 
pipeline, Hardware design flow 

Justin Sung FPGA Market Research, FPGA Designing and 
Research, hardware/software design flow 

 

4.4 OTHER RESOURCE REQUIREMENTS 

● Microsemi’s Igloo nano AGLN250V2 
● Libero SoC IDE for Microsemi’s FPGAs 
● TI’s MSP430FR5994 
● Powercast P2110b RF Energy Harvester 

 

4.5 FINANCIAL REQUIREMENTS 

The financial requirements for our project is to keep everything we need to buy under $200. 

5. Testing, and Implementation 

5.1 INTERFACE SPECIFICATIONS 
● Libero SoC V11.9 
● ModelSim 

○ Verifies that the hardware works as intended. 
● Synplify PRO 

○ Verifies the power constraints are satisfied with the hardware design 

 

5.2 HARDWARE AND SOFTWARE 
● Igloo Nano ALGN250 Starter Kit 

○ This was a reasonably priced FPGA and had all the specs we were looking for. 
● Libero SoC V11.9 

○ This is a tool that MicroSemi offers for free to use on all their FPGA products 

SDMAY20-38     19 
 



 

● Powecast P2110B 
○ A 915 MHz RF energy harvester that will be used to provide power to downstream 

devices 
● Lab Instrumentation 

○ Includes measurement devices such as multimeters and oscilloscopes used for 
testing and analysis 
 

5.3 FUNCTIONAL/NON-FUNCTIONAL TESTING 

 

Our testing phase was never executed due to COVID-19 complications. We meant to get more 
specific about our requirements once we integrated the device. 

 

Test ID: Test Type: Grouping: Given/When/Then Verified
? 

Additional 
Comments 

 Functional: Unit Tests:    

F-U-101   Given an RF Harvester Unit, 
When running, Then it shall 
produce the power as 
specified in our power 
analysis. 

 Add % error 
when better 
defined... 

F-U-102   Given our sound 
classification software 
(training set and input), When 
the program executes, Then 
the input sound shall be 
accurately classified into the 
appropriate category. 

 See Test No 
203 & 204 for 
Accuracy 
Percentage 

F-U-103   Given the results of 
computation in memory, Then 
the results shall be exportable 
by an offline UART.  

  

F-U-104   Given a microcontroller, 
When a sound is given as an 
input to the microcontroller, 
Then the software embedded 
on the microcontroller shall 
output a classification for the 
input sound. 

  

F-U-105   Given an FPGA, When a   

SDMAY20-38     20 
 



 

sound classification result 
sent as an input to the FPGA, 
Then the result shall be 
stored in the FPGA’s 
memory. 

  Integration 
Tests: 

   

F-I-200   Given an FPGA and a 
Microcontroller, When the 
microcontroller has executed 
it’s computation, Then the 
result shall be sent as an 
input to the FPGA. 

  

F-I-201   Given an RF Harvester and 
an FPGA, When the RF 
Harvester is running, Then 
the RF Harvester shall apply 
sufficient power to keep the 
FPGA running in steady, 
computation, and data 
storage states. 

  

  System Tests:    

F-S-300   Given an iFPGA system, 
Then it should not be placed 
under mild/extreme weather 
conditions but rather kept at 
room temperature. 

  

F-S-301   Given an iFPGA system, 
When and IF the FPGA shuts 
off mid-computation, Then 
the FPGA should not need to 
be reprogrammed to continue 
the computation. 

  

F-S-302   Given an iFPGA system, 
When the FPGA is toggled 
on->off->on, Then the 
computation should continue 
to run as well as data transfer 
once turned on again. 

  

  Acceptance    

SDMAY20-38     21 
 



 

Tests: 

F-A-400   Given an iFPGA system, 
Then sufficient 
documentation shall be 
provided enabling the user to 
fix and understand the entire 
system. 

  

 Non-Functio
nal Tests 

Performance 
Tests: 

   

NF-P-500   Given the system’s FPGA 
(Igloo Nano) , Then it should 
not run above ___ Watts 

  

NF-P-501   Given the system’s FPGA 
(Igloo Nano) , Then the 
voltage applied to the device 
shall not exceed its maximum 
threshold (based on it’s 
datasheet). 

  

NF-P-502   Given the system’s 
microcontroller (MSP430) , 
Then  the voltage applied to 
the device shall not exceed its 
maximum threshold (based 
on it’s datasheet). 

  

NF-P-503   Given our sound 
classification software, Then 
the Training Accuracy shall 
be a minimum of 50%. 
 

  

NF-P-504   Given our sound 
classification software, Then 
the Testing Accuracy shall be 
a minimum of 50%. 

  

 

5.4 PROCESS 

Requirements are verified by the Requirement Verification Matrix specified in section 5.3. 

The general flow of testing will follow the diagram below. 

 

SDMAY20-38     22 
 



 

 

 

Test Plan Flow Diagram  

 
Figure 5.1  Test plan flow diagram 

 

 

 

6. Results 
Due to COVID-19, we were able to achieve 3 of our 4 adjusted goals.  We developed the MAC 
hardware and confirmed through simulations and testing that it functioned as we intended.  The 
software pipeline was completely converted into C to be placed on the MSP430 and was working as 
intended through testing.  The PCB design was completed and the physical board was delivered on 
time.  The last goal, establishing data communication between the MSP430 and the Nano was not 
achieved.  

 

6.1 HARDWARE 

● Schematics 
○ Below you will find the full electrical schematics for our design 

SDMAY20-38     23 
 



 

figure 6.11 - Powercast  Energy Harvester Schematic 

figure 6.12 - Regulators Schematic 

SDMAY20-38     24 
 



 

 

figure 6.13 - Schematic for the Master MSP430 Microcontroller 

 

figure 6.14 - Schematic for the Microsemi Igloo Nano FPGA 

SDMAY20-38     25 
 



 

 

figure 6.15 - Schematic of the slave MSP430 Microcontroller 

 

figure 6.16 - Schematic of the Capacitor Bank 

SDMAY20-38     26 
 



 

 

figure 6.17 - Schematic of switches, reset, and oscillator control circuits 

 

6.18 - Schematic of Header 

SDMAY20-38     27 
 



 

 

● Printed Circuit Board Layout 

 

○ Below you will find the printed circuit board layout design followed by images of 
the fabricated board 

 

figure 6.19 - EAGLE Printed Circuit Board Layout Design 

 

 

 

 

 

 

 

 

SDMAY20-38     28 
 



 

figure 6.20 - Final Fabricated Printed Circuit Board 

 

 

Due to Covid-19, this is the extent of our results in reference to hardware deliverables. We 
have created a full working electrical schematic of our system, designed and fabricated a 
Printed circuit board, but were unable to populate the board and perform comprehensive 
testing of our system. 

 

 

 

 

 

 

 

 

 

 

SDMAY20-38     29 
 



 

6.2 SOFTWARE 

When running the “golden” case of having PC computation power and being able to run Python, 
classifications are produced very accurately and quickly. When running the following script: 

Inputs to the script are: Quantized tflite model and .wav file (which is located in fold 5 and is of type 
street music) 

 

 

 

Output is produced very quickly showing the following vectors: 

SDMAY20-38     30 
 



 

 

The neural network calculations predict that the sound has a 55% chance to be street music, and 
that is correct! Since this vector had the majority, this is what would be outputted. In this case, we 
are able to use sound library Librosa in python which is an extremely handy tool. All of the sound 
analysis is performed in the first 3 lines of code. 

As we move into the C++ implementation, things begin to get a little trickier. We were able to find 
another sound analysis library called Aquila, and it helped out a little bit, but analysis still becomes 
a lot more involved when using a lower level programming language. When running the following 
file: 

 

SDMAY20-38     31 
 



 

 

 

A .txt file is populated with the generated MFCC Coefficients needed to perform classification. In 
our intended implementation, this would just be uploaded to an MSP430 and the coefficients could 
be transmitted to the Nano for our MAC process with the model weights. However, for the high 
level software testing, these coefficients need to be ran through model prediction to make sure that 
the C++ implementation of sound analysis is performing similarly to the python version. We will do 
that with the following python script: 

 

SDMAY20-38     32 
 



 

 

Here the Coefficients from the .txt file are copied over and entered into the input_data array 
(formatting issues prevented us from loading the .txt file directly) and, output is produced as 
follows:  

 

The coefficients generated through the C++ model still work with our model, as street music is still 
the greatest probability vector at 53%. There is a slight reduction in confidence, which may affect 
overall accuracy. 

Unfortunately, due to Covid-19 complications and time restrictions, modular and complete 
testing of the C++ implementation was not achieved and therefore could maintain some 
inaccuracies in the prediction process. Since the model was generated with the Librosa 
sound library, some of the sampling and MFCC calculations may differ from the Aquila 
calculations.  

Upon further testing, it may be needed that a new model be trained using aquila to analyze each 
.wav file and generate model weights. The Librosa training script has been omitted here in the 
result section, but will be included in the appendix. 

Model upload and testing on MSP430 has been performed by Sahu Rohit and other grad 
students, who had an existing implementation of neural networking on the MSP and 
attempted to apply it to our neural network application. Since we were not able to 
implement our software due to Covid-19, we did not dive further into testing the model on 
the hardware. 

SDMAY20-38     33 
 



 

 

 

6.3 FPGA AND MCU SYSTEM 

● MAC accelerator Processor  
○ Designed a 10 x 10 matrix multiplier dependent on a systolic array algorithm 

(VHDL) and simulated on the Modelsim.  List below is the algorithm structure and 
the part of the code. 

○ Systolic Array Structure 

 

 

SDMAY20-38     34 
 



 

 

○ Part of Code for the VHDL Structural behavioral, Combine PE(Calculation Part) block with the 
matrix multiplication 

SDMAY20-38     35 
 



 

 

 

 

7. Closing Material 

7.1 CONCLUSION 

SEMESTER 1 

So far, we have gotten through most of the thorough description of the design. Our software can do 
sound classification, we know which part of the software we are going to accelerate, and we have an 
understanding of how we are going to attach it to our embedded hardware. On the electrical side, 
we have done power analysis for the FPGA as well as done the number crunching so we know what 
electrical components we are going to buy. For the Embedded System, we have picked out a board 
as well as the ip-blocks we are going to use when programming, and the channels of 
communication between devices and to external devices. Our goal for this project is to create a 
PCB-based battery-less FPGA platform that can accelerate software computations. Most of this goal 
is achieved in simply making the physical device and programming it. Making a PCB is one of the 
tasks to be taken care of in the beginning of the semester. The battery-less capability should be 
feasible based on our power calculations but it may need some tweaking as we learn more about 
the software. The acceleration will be feasible as long as we give ourselves enough time to test and 
make tweaks to our design as necessary. Since we won’t know if the part of the software we choose 
to accelerate will actually accelerate, it is important that we start the next semester running. We 

SDMAY20-38     36 
 



 

are finishing the semester with an in-depth analysis of how to integrate the individual components 
of the project. The best way to make sure this whole design can actually accelerate a computation is 
to build it as quickly as possible up front so in the case the software doesn’t actually accelerate, we 
have time to figure out why and make appropriate changes to our design so that it does.  

SEMESTER 2 

Second semester has proven to be both very challenging and rewarding for our project. Due to 
Covid-19, we were forced to redefine many of our deliverables but we were able to make 
considerable progress on our project nonetheless. In terms of hardware, we were able to create a 
powerflow that was able to withstand our criteria, decide on a capacitance that would be big 
enough to allow our system to boot up and perform necessary computations while not big enough 
to cause serious delay through charging time, complete full electrical schematics, and design and 
fabricate a PCB that is awaiting population and testing due to the extenuating circumstances.  

Software complications have been in attempting to implement the “golden” python system into a 
lower level language suitable for upload onto the embedded system. We were able to develop a new 
sound analysis pipeline in C++ that produces similar enough data to be implemented on the MSP’s. 
It’s similar accuracy to the python scripts results have not been easy to produce. 

Establishing data communications via SPI between the MSP430 and the Nano took more time than 
we had anticipated.  Lack of documentation for core configuration and processor programming led 
to the delay in achieving what we planned to accomplish. Eventually, data communication with the 
varying cores locally within the Nano functioned as intended, but the addition of the MSP430 
resulted in unsuccessful attempts.  Memory I/O operations were demonstrated to function as 
intended.  The MAC hardware was designed and through simulations and testing, was confirmed to 
function as intended. 

Although the semester did not seem to go quite like any of us expected, we have effectively laid the 
groundwork for an intelligent intermittent FPGA system. 

7.2 REFERENCES 

K. Kowalczyk, S. Wozniak, T. Chyrowicz and R. Rumian, "Embedded system for acquisition and 
enhancement of audio signals," 2016 Signal Processing: Algorithms, Architectures, Arrangements, 
and Applications (SPA), Poznan, 2016, pp. 68-71. 

 

7.3 APPENDICES 

I: OPERATION MANUAL 

 

Downloading Libero SoC v11.9 

1. Libero SoC v11.9 is the last version that supports Igloo Nano development.  It can be through the 
Microsemi website.  Follow the instruction for a node-locked silver license. 

2. Open the application and you should see the home page: 

SDMAY20-38     37 
 



 

 

SPI Communication Design on the Igloo Nano 

1. In the upper tab, go to Project, name the project, and hit Next. 
Choose: 

a. Family : IGLOO 
b. Die: AGLN250V2 
c. Package: 100VQFP 

2. Hit Finish.  This should be what you see: 

SDMAY20-38     38 
 



 

 

3. On the left double click Create SmartDesign. 
4. On the bottom of the left hand panel, click Catalog.  

Search and add to the canvas:  
a. CoreABC 
b. CoreAPB3 
c. CoreSPI 

CoreABC is the processor in charge of coordinating the other cores and data transmission. 
CoreAPB3 is the bus controller designed for CoreABC.  It uses the AMBA bus protocol.  CoreSPI is 
the SPI controller in charge of receiving and transmitting data. 

Core Configuration and Linkage 

SDMAY20-38     39 
 



 

1. Top Level: 
This design depicts the basic hardware configurations for SPI communication. 

 

 

 

 

 

 

 

 

 

 

 

 

 

SDMAY20-38     40 
 



 

2. CoreSPI: 

 
 

SDMAY20-38     41 
 



 

3. CoreABC: 

 

 

SDMAY20-38     42 
 



 

This assembly depicts basic interfacing with the CoreSPI. 

 
 

SDMAY20-38     43 
 



 

4. CoreAPB3: 

 
 

Testing 

1. Once the canvas has been completed and the core configurations are done, hit the yellow 
Generate Component button on the top panel of the canvas. 

SDMAY20-38     44 
 



 

2. After completion, double click Simulate in the left hand panel.  This will open ModelSim. 

 
3. This should be similar to what you want: 

 

 

SDMAY20-38     45 
 



 

Replicating Software Neural Network Creation 

Download Urbansound 8k dataset of sounds and sound classifications here: 
https://urbansounddataset.weebly.com/urbansound8k.html 

Now make sure your python version is up to date and that you have Librosa installed.  

 Run the following python script to generate your model (I use Anaconda to run my .py 
files): 

 

SDMAY20-38     46 
 

https://urbansounddataset.weebly.com/urbansound8k.html


 

 

 

SDMAY20-38     47 
 



 

 

Running this script will take upwards of 15 minutes or more on a pc as this will train the 
model using the Urbansound dataset which contains over ~8,700 .wav files. The script also reports 
the training and testing accuracies, both of which should be very high. The script also takes in an 
input sound and runs a prediction on it. This is written as “filefile” at the end of the script. Feel free 
to upload your own sound as i did and see which classification it is most similar to. Here my clip of 
durham at 2:45 is most similar to children playing - it is just a sound of murmuring students 
studying, like children playing at a park. Also make sure that all of the paths are updated with your 
current paths rather than mine. 

Once you have your trained model, you can quantize it to save space should you want to 
upload it to an embedded system, you can read more about this here: 
https://www.tensorflow.org/lite/performance/post_training_quantization 

Now you can use the python testing script from section 6.2 to test any .wav file you’d like 
to see what classification the neural network thinks your sound is.  

If you would like to develop the C++ version of the testing script. You can access the Aquila 
github here (The actual website seems to be down for the moment): 
https://github.com/zsiciarz/aquila 

Once you compile the aquila examples, access the mfcc_calculation file and insert the C++ 
program in 6.2 in place of the current file and compile and run. 

You can now replicate the software portion of this project. 

 

 

II: ALTERNATIVE / INITIAL VERSIONS OF THE DESIGN 

Version 1: 

Version 1 had a single MSP430 connected to the Nano with a microphone where the FPGA would 
be accelerating the MFCC generation.  This version was revised once we discovered that the FPGA 
did not have enough memory space to store all the intermediate data produced in MFCC 

SDMAY20-38     48 
 

https://www.tensorflow.org/lite/performance/post_training_quantization
https://github.com/zsiciarz/aquila


 

generation. This version was conceptualized before we researched the chips and found the 
specifications that the MSP430 and the Nano had. 

 

Version 2: 

Version 2 had a single MSP430 with the Nano where the acceleration target was the matrix 
multiplication associated with inference.  This version was revised once we discovered that a single 
MSP430 would not be able to store the entire software program and the intermediate data 
produced from the Nano.  This version was discovered to be infeasible once we discovered the 
amount of C libraries required in audio recognition.  

 

III: OTHER CONSIDERATIONS 

A big thing we didn’t consider until the second semester was the importance of making an 
informed decision about the FPGA we wanted to use. During semester one we put ourselves in a 
hole by thinking the first thing we needed to figure out was which FPGA we were going to use for 
our project. We didn’t know a lot about FPGAs at the time and there is still a lot to learn but it 
occurred to us that we didn’t know nearly enough about the FPGA we chose until after we chose it. 
If we were to do it all over again we would have waited until we knew more specifics about the 
software we wanted to run before making a decision about the FPGA we wanted to use.  

 

IV: CODE (OPTIONAL) 

Code for Core_ABC: 

SDMAY20-38     49 
 



 

 

 

V: REFERENCES 

 

Microsemi Tutorials 

https://www.microsemi.com/product-directory/libero-soc/5507-libero-soc-v11-9-archive#document
s 

 

Efficient Processing of Deep Neural Networks: A Tutorial and Survey 

https://arxiv.org/pdf/1703.09039.pdf 

SDMAY20-38     50 
 



 

 

 

SDMAY20-38     51 
 


