

iFPGA - Intermittent Intelligent FPGA Platform
Design Document

sdmay20-38

Client: Henry Duwe

Advisers: Henry Duwe

Team Members/Roles

Justin Sung - Embedded Systems Engineer

Zixuan Guo - Systems Diagram Expert

Jake Meiss - Electrical Engineer

Andrew Vogler - FPGA Design Engineer

Jake Tener - Software Technician

Team Email: sdmay20-38@iastate.edu

Team Website: http://sdmay20-38.sd.ece.iastate.edu

Executive Summary

Development Standards & Practices Used

Hardware and software we will use in this project:

● Powercast P2110b RF Energy Harvester
○ RF to DC Converter
○ Boost Converter
○ Voltage Monitor

● FPGA Circuit Board
○ MicroSemi’s Igloo nano AGLN250

● Microphone
○ MEMS microphone

● Capacitor
○ Electrostatic double-layer capacitor

● Regulators
○ Boost and Buck converters to manage voltage to the load

● Neural Network
○ Tensorflow Lite Model with 3 fully connected layers

● Microcontroller
○ TI’s MSP430FR5994

Engineering Standards we are applying to our project from the IEEE Code of
Ethics:

● Honesty about the functionality and usefulness (#’s 3 & 6)
○ Intellectual integrity for previous work is necessary for eventual

published research on the platform
● Emphasis on Teamwork (#’s 7, 8, & 9)
● To make the highest quality product within our capability (#’s 5 & 6)

Summary of Requirements

● Design batteryless PCB-based FPGA system
● FPGA performing computation on low power
● Design application that can be accelerated onto the FPGA
● Accurate neural network predictions
● Data exportable by UART
● Ability to checkpoint progress in a program

SDMAY20-38 1

○ Intermittent execution on an FPGA platform with frequent power
cycling

Applicable Courses from Iowa State University Curriculum

● CPRE488
● CPRE381
● EE330
● CPRE281
● CPRE288

New Skills/Knowledge acquired that was not taught in courses

List all new skills/knowledge that your team acquired which was not part of your
Iowa State curriculum in order to complete this project:

● Using Libero (an FPGA design tool)
● How to do independent research
● IP-Block research
● Machine Learning
● Python
● Neural Networks
● Sound Parsing and Analysis

SDMAY20-38 2

Table of Contents
1 Introduction 5

1.1 Acknowledgement 5

1.2 Problem and Project Statement 5

1.3 Operational Environment 5

1.4 Requirements 6

1.5 Intended Users and Uses 6

1.6 Assumptions and Limitations 6

1.7 Expected End Product and Deliverables 6

2. Specifications and Analysis 7

2.1 Proposed Design 7

2.2 Design Analysis 12

2.3 Development Process 12

2.4 Design Plan 12

3. Statement of Work 13

3.1 Previous Work And Literature 13

3.2 Technology Considerations 13

3.3 Task Decomposition 14

3.4 Possible Risks And Risk Management 14

3.5 Project Proposed Milestones and Evaluation Criteria 15

3.6 Project Tracking Procedures 15

3.7 Expected Results and Validation 15

4. Project Timeline, Estimated Resources, and Challenges 15

4.1 Project Timeline 15

4.2 Feasibility Assessment 18

4.3 Personnel Effort Requirements 18

4.4 Other Resource Requirements 19

4.5 Financial Requirements 19

SDMAY20-38 3

5. Testing and Implementation 19

5.1 Interface Specifications 19

5.2 Hardware and software 19

5.3 Functional and Non-Functional Testing 20

5.4 Process 23

6. Closing Material 24

6.1 Conclusion 24

6.2 References 24

6.3 Appendices 25

List of figures/tables/symbols/definitions
2.1 High level Diagram 9

2.1 Hardware Diagram 10

2.1 Software Diagram 11

5.4 Test Plan Flow Diagram 23

SDMAY20-38 4

1 Introduction

1.1 ACKNOWLEDGEMENT
Henry Duwe - Advised and set concrete goals for the team to work towards.

Narayanan Vishak - Assisting in the HW design development.

Sahu Rohit - Assisting in the SW design and development.

1.2 PROBLEM AND PROJECT STATEMENT
Develop a hardware and software solution to intermittently execute a program
targeted on a low power FPGA platform that can withstand multiple power cycling
events.

As IoT applications become more prolific and integrated into society, the demand
for more efficient and powerful devices grow. Addressing these extreme resource
requirements and computational demand results in stress on the power supply.
Batteries are the predominant source of power for IoT devices. However, batteries
are unsustainable and requires maintenance and replacement relatively often in
the life span of devices. To confront these inadequate power sources,
Self-harvesting power technology shows promise. They require little to no human
intervention upon deployment and have significantly longer lifespans compared to
batteries. Widespread adoption of this technology can lead to reduced battery
usage and mitigate the unattractive qualities that are associated with it.

The iFPGA is a low power designed FPGA platform powered completely by the
powercast harvester device to intermittently execute an audio recognition program
with resilience against frequent power cycling events. If successful, the iFPGA
prototype will uncover novel design solutions to address unreliable power sources,
and broaden the feasible areas where IoT can be applied. The prototype will lead
to more advanced designs that will build and improve upon any shortcomings of
the final prototype. For our research, the iFPGA is targeted at performing audio
recognition and classification.

1.3 OPERATIONAL ENVIRONMENT
The iFPGA will be used within the lab environment, so designing for
environmental resilience is a low priority.

SDMAY20-38 5

1.4 REQUIREMENTS

Functional Requirements

● Batteryless
○ Power provided by means of RF Energy Harvesting

● Data transmission off-chip
○ UART

● Program execution that can pause and continue while power toggling
○ Checkpointing in the software

Non-Functional Requirements

● Low Power
○ Must be able to detect, perform computations, and transmit data at

low power
● Sensor Range

○ Sensor must be capable of capturing nearby audio
● Little to no human intervention after deployment

1.5 INTENDED USERS AND USES

This is the product designed for collecting and analyzing audio based data on
an FPGA with an emphasis on low power design. It can be applicable to areas
such as IoT and a prototype for developers to expand the study and project.

1.6 ASSUMPTIONS AND LIMITATIONS
Assumptions

● This project will be used by Dr. Duwe and his research team.
● The end result of the project is meant to be a prototype design for research,

not a market-able project.

Limitations

● Cost of prototype shall not exceed 200 USD
● Battery-less

SDMAY20-38 6

1.7 EXPECTED END PRODUCT AND DELIVERABLES
1) A PCB prototype that can accelerate a portion of the audio recognition

pipeline that demonstrates the ability to complete the program successfully
with frequent power cycling events throughout its execution. Powered by a
radio frequency harvester feeding into a capacitor device. A demo to show
these capabilities suffice in a successful end product.

2) Comprehensive documentation describing and explaining parts and how to
interface with the platform. Justification of our design choices will be
included with the end product prototype.

2. Specifications and Analysis

2.1 PROPOSED DESIGN
Our target solution is an FPGA powered by RF harvesting that can perform simple
computations within a low power cycle. We will be using the Powercast RF energy
harvester which will provide enough power to run the FPGA and the
microcontroller. The FPGA, Microsemi’s Igloo Nano, will be able to operate on low
power in order for this to be possible. Our FPGA will perform part of our software
computation: audio classification; and speed it up. We will do this through
accelerating sound analysis onto the FPGA. The FPGA will receive a new sound,
generate a spectrogram image of it (a combination of the sound’s amplitude,
frequency, and change in time) and transmit the data to a connected
microcontroller (MSP430). The rest of the software will be uploaded to the
MSP430, which will compute an inference of the sound’s spectrogram with a
loaded neural network, and classify the given sound. Some of the specifics of each
technical area of the project are handled below:

Power Management:

● In order to fulfill the requirement for our project to be batteryless, we must
begin with energy harvesting. We will be using a 3-watt, 915 MHz wifi
transmitter that will be providing the power to our system. This radio
frequency signal will be received by a directional patch antenna and then
converted to DC power by a Powercast P2110B RF energy harvester. At this
point, the converted DC power will be stored in capacitor. The capacitor
node will be connected to both a boost converter and a voltage monitor.
The voltage monitor will supervise the voltage at the capacitor node,
checking for an upper threshold of 1.25V and a lower threshold of 1.02V. The
capacitor will begin charging up until the upper voltage threshold is
reached, triggering the voltage to be amplified by a boost converter which

SDMAY20-38 7

in turn will provide power to the MSP430 as well as 2 discrete voltage
regulators. The MSP430 will control the two regulators that will then
provide power to the Igloo Nano FPGA when computations are necessary.
The capacitor will be discharging as it provides power to the load
(Microcontroller and FPGA) until the capacitor voltage hits the lower
threshold of 1.02V in which power to the load is lost and the storage device
begin to recharge. Since this process will be continuous, power to the load
will be intermittent which must be taken into account in the remainder of
the design.

FPGA/Microcontroller Design:

● When powered on by the MSP430, the Igloo Nano will power on and begin
computation. Once the MSP430 receives analog audio data, the codec
converts the data to be sent to the nano for spectrogram generation.
Second, this digital signal will send into the software processor and go
through six steps to generate the MFCC: Optimizing the frame, Calculate
the periodogram estimate of the power spectrum, Apply the mel filterbank
to the power spectra, Sum the energy in each filter, Take the logarithm and
DCT for the energies from filter (this step is to let the sound to better
represent the human ear), finally, Keep DCT coefficients 2-13 and discard
the rest to let the spectrum. The MSP430 will send relevant information to
the nano when ready, then it will perform the computation and write back
the result to the MSP430. Once the data has returned to the MSP430, it will
be sent off to an external server.

● The choice to use the MSP430 as our microcontroller was from a suggestion
from Dr. Duwe. Although we could have searched for others, this was his
recommendation given his experience in the area and so we thought that to
be the best microcontroller for the job. Our FPGA, the Igloo Nano, was
chosen after looking at the different products between Lattice and
Microsemi. We first came to the conclusion to use a Microsemi product
because we verified that we could use Libero, an FPGA design tool, for free.
We also found that Lattice was more vague on the product descriptions,
making Microsemi a better company for the job. We then narrowed down
to the Nano because it is low power and because it still had the most
computation power given it’s low power.

Software:

● Since our project entails audio classification, we developed a neural
network for our device to use in inference with each new sound. In order to
do this, we used UrbanSound 8k’s dataset of 8,732 sounds with 10 unique

SDMAY20-38 8

classifications. Then we sample them into a digital time series and generate
spectrograms of each sound (an array of floats indicating its frequency,
amplitude, and change in time). With this data, we are able to train a model
to know what type of sound correlates to a given label.

● Upon receiving a new sound, our software will sample the sound, then
generate its spectrogram, and then use this in inference with our model’s
weights in order to predict the class of the sound (Fig 2.3). This inference is
then going to be transmitted off of the device to a target system.

● When accelerating and uploading the software to the devices, the sound
analysis (sampling and MFCC generation) will be our target acceleration for
the Igloo Nano. The MSP430 will run the model and inference with the
sound data from the Nano.

Output:

● The Igloo Nano and MSP430 will conduct this software on a given segment
of sound, then transmit a resultant string including the sound’s
classification, and a date time object of when the sound was heard.

Top Level Diagram

Figure 2.1 Top level design diagram

SDMAY20-38 9

Embedded System Architecture Diagramt

Figure 2.2 Embedded System Architecture design diagram

SDMAY20-38 10

Software Process

Figure 2.3 Software design diagram

SDMAY20-38 11

2.2DESIGN ANALYSIS
Strengths

● Performing computations on an indirect powered platform
● Experience with Test Plans

Weaknesses

● Possibility of insufficient energy harvested resulting in an inability to
provide power to the load

● Low power design provides limitations to computational intensity and
memory capabilities

● Lack of data security on the platform
● Hardware specifically targeted to perform acceleration on one applications,

not flexible for different applications

2.3DEVELOPMENT PROCESS
We are using a waterfall-agile mix for our workflow. Since many of the tasks in the
early phase we are walking into with a lot of unknowns, we have to go back and
forth with decisions as we learn more about FPGA design. We carry out a new set
of tasks each week. Some of the smaller decisions don’t have a specific due date
(hence the waterfall method) but the bigger decisions, such as choosing an FPGA
have a more concrete deadline (more of the agile mindset).

2.4DESIGN PLAN
Once the technology and materials have been secured, we plan to employ a design
processes similar to integration by parts and modular design. For both the
hardware and software, the first step will be to create and design the modular parts
of the project (e.g. read-and-write functionality module, hardware accelerator
module, FPGA-to-microcontroller interface module, etc.) and verify that they
work as intended through rigorous testing. Once each module has been created
and verified for functionality, the next step would be to integrate these modules
together and verify functionality of the combined modules. Repeating this
integration and verification until all modules are combined into a single, fully
integrated design.

Modular design will streamline the progress made since errors will be corrected
upon discovery rather than allowing them to propagate further into the design and
complicating the debugging process. Integration by parts will also facilitate this
streamlined progress since logical errors will be caught upon testing the modules
and ensures that errors will be corrected at the source and not be allowed to
propagate downstream.

SDMAY20-38 12

3. Statement of Work

3.1 PREVIOUS WORK AND LITERATURE

Embedded System for Acquisition and Enhancement of Audio Signals
Paper

This paper describes previous research into an FPGA-based accelerator targeted at
audio capture and filtering. It describes the embedded system architecture, signal
processing steps and signal enhancement that can be accelerated using hardware.
The system architecture was helpful in formulating the eventual hardware
diagram. The link to the paper is provided in the appendix.

Efficient Processing of Deep Neural Networks: A Tutorial and Survey Paper

This paper went into the details of current efforts and strategies in accelerating
neural network computations on FPGAs and resources-exhaustible hardware
platforms. It states that the portion with the highest potential to be hardware
accelerated in a neural network pipeline is the multiply-and-accumulate (MAC)
operations. These operations have also been shown to result in significant
reduction in energy consumption.

Market survey comparisons of components for the platform explained in
the previous sections in detail.

Self energy producing devices exists, but none that try to achieve something as
costly, both in power and computational power, such as what the iFPGA proposes.
No other device in its class can sustain itself solely by radio-frequency derived
power while attempting costly computations.

3.2 TECHNOLOGY CONSIDERATIONS

Low power and budget are the two main factors that guided the technology
choices made. Since the end product is a prototype to assess the feasibility of such

SDMAY20-38 13

a platform, the budget was restricted and considerations were made in light of it.
The low power constraint also affected the technology choices.

3.3 TASK DECOMPOSITION

● Decide on components that fit the project constraints and
functional/non-functional requirements.

○ Perform market survey with limitation considerations.
● Design the hardware platform.

○ Research into existing hardware architecture targeted at audio
acceleration.

○ Design and verify portions of the completed hardware architecture
and integrate together until the full system has been created and
verified.

● Design the software to handle the audio pipeline acceleration and
intermittent programming.

○ Design and develop the software to be integrated with the hardware
platform.

○ Modify the software to handle intermittent programming.
● Integrate (2) and (3).
● Perform system-level test plan

3.4 POSSIBLE RISKS AND RISK MANAGEMENT

● Platform maximum power consumption
○ The in-rush power and the dynamic power requirements for the

platform is bounded by the capacitor storage. A full discharge of the
capacitor needs to be able to account for these power demands.

● Intermittent execution handling
○ In the case where the nano is in the middle of its spectrogram

computation and the power is insufficient to continue to power it,
the intermediate data will be lost and re-execution of the
spectrogram must be queued again.

○
● The Data-pipeline on FPGA and the I/O resources

○ Data go through the Data-pipeline on the FPGA needs to assign each
I/O and IP resources, we need to make sure we have a good
management on using these resources and optimize the data

SDMAY20-38 14

pipeline or its structure.

3.5 PROJECT PROPOSED MILESTONES AND EVALUATION CRITERIA

Key Milestones:

● Component finalization list
● FPGA component integration
● Power analysis and component integration
● Intermittent programing design
● Completed hardware and software integration

3.6 PROJECT TRACKING PROCEDURES

Weekly group meetings, weekly advisor meetings, and weekly work period
meetings.

3.7 EXPECTED RESULTS AND VALIDATION
Deploy the platform in the field and be able to: (1) capture audio from its
environment, (2) perform computation on the data, and (3) transmit the results
from the computation to an external device. Frequent demonstrations will
guarantee that each milestone is functioning as expected and that progress is
being made in the right direction and in the right way.

4. Project Timeline, Estimated Resources, and
Challenges

4.1 PROJECT TIMELINE

Task Name Start Date End Date

Semester 1

All Groups

SDMAY20-38 15

Explore previous work Aug 30th, 2019 Sept 6th, 2019

Embedded System

Research and choose FPGA Sept 6th, 2019 Sept 27th, 2019

Prototype FPGA Programs Sept 27th, 2019 Oct 18th, 2019

IP-Block Research Analysis Oct 18th, 2019 Nov 15th, 2019

Matrix Multiplication Research and
Prototyping

Nov 15th, 2019 Dec 6th, 2019

Software

Research Possible Applications Sept 13th, 2019 Sept 27th, 2019

Research Neural Networks and Machine
Learning

Sept 27th, 2019 Oct 3rd, 2019

Develop and Train UrbanSound 8k Neural
Network (Keras Model)

Oct 3rd, 2019 Oct 17th, 2019

Develop Testing Script for Neural Network Oct 17th, 2019 Oct 25th, 2019

Quantize UrbanSound 8k Keras Model for
Acceleration (Converts to TfLite Model)

Oct 25th, 2019 Nov 8th, 2019

Develop Testing Script for TfLite Model Nov 8th, 2019 Nov 15th, 2019

Upload TfLite Model onto MSP430 and Run
Test Case Inference

Nov 15th, 2019 Current

Research Sound Analysis with Intention to
Convert Python Libraries to C Code

Nov 29th, 2019 Current

Power

Research of RF Energy Harvesting Platform Sept 6th, 2019 Sept 27th, 2019

FPGA Power Consumption Analysis Sept 16th, 2019 October 25th,
2019

Power Management Design Oct 18th, 2019 Current

System Level Architecture Diagram Nov 25th, 2019 Current

SDMAY20-38 16

Other:

Presentation & Design Doc Preparation Nov 22nd, 2019 Dec 9th, 2019

Semester 2

Integration

PCB Design Completion and Order Jan 13th, 2020 Feb 7th, 2020

Transfer Python Code to MSP430 Jan 13th, 2020 Jan 24th, 2020

Fourier Transformations (FPGA Software) Jan 13th, 2020 Jan 24th, 2020

Sound Spectrogram Generation Jan 24th, 2020 Feb 14th, 2020

Data Transfer Jan 24th, 2020 Feb 14th, 2020

Change to Microphone Input Feb 14th, 2020 Mar 13th, 2020

Data Retention Feb 14th, 2020 Mar 13th, 2020

Testing

Input .wav files for hardware/electrical testing Feb 14th, 2020 Mar 13th, 2020

Microphone to .wav file testing Mar 13th, 2020 Apr 3rd, 2020

Refining

Tweak hardware/electrical based on testing Mar 13th, 2020 Apr 3rd, 2020

Tweak software based on testing Apr 3rd, 2020 Apr 17th, 2020

Other

Buffer Time / Documentation Updating Apr 17th, 2020 Apr 27th, 2020

Final Project Presentation Preparation Apr 27th, 2020 May 1st, 2020

This schedule will keep our project on target while also allotting us enough time to
sufficiently accomplish each important part. Our goal is to have each piece
working well enough to be able to convince our client that we can build a working
prototype during semester 2 by the end of the first semester.

SDMAY20-38 17

4.2 FEASIBILITY ASSESSMENT

Our realistic projection of the project will be a custom PCB with the Igloo nano
and the MSP430. Given audio data, it will be able to generate a scaled
spectrogram, pass it through the neural network to obtain the inference data, and
be able to classify the audio data. The spectrogram generation step should be
handled by the FPGA while the microcontroller handles the rest.

4.3 PERSONNEL EFFORT REQUIREMENTS

Our personal effort will be very high throughout the year. This has been deemed a
difficult senior project by our advisor, so it will be tough for us. We will be
spending a very high volume of time during the fourth cycle (Build individual
pieces, test, and demo) as we get ready to show off our project ideas in order to
begin prototyping.

Name Overall Contributions to the
Project

Jacob Tener Neural Network Research, Analysis and
Application. Constructed quantized
Urban Sound 8k Model. Sound Parsing
and Analysis. Applied CNN to
microcontroller.

Jake Meiss Energy harvesting research, power
consumption measurements, power
management design, system level
architecture

Andrew Vogler FPGA Market Research, Building FPGA
example projects, IP-Block Research,
Requirements, Schedule Flow

Zixuan Guo FPGA Testing research and deal with
the data pipeline, Hardware design
flow

Justin Sung FPGA Market Research, FPGA
Designing and Research, HW/SW
design flow

SDMAY20-38 18

4.4 OTHER RESOURCE REQUIREMENTS

● Microsemi’s Igloo nano AGLN250v2
● Libero SoC IDE for Microsemi’s FPGAs
● TI’s MSP430FR5994
● Powercast P2110b RF Energy Harvester

4.5 FINANCIAL REQUIREMENTS

The financial requirements for our project is to keep everything we need to buy
under $200.

5. Testing and Implementation

5.1 INTERFACE SPECIFICATIONS
● Libero SoC V11.9
● ModelSim

○ Verifies that the HW works as intended.
● Synplify PRO

○ Verifies the power constraints are satisfied with the HW design
● Code Composer Studio 9.2.0

○ Verifies software implementation on the hardware

5.2HARDWARE AND SOFTWARE
● Igloo Nano ALGN250 Starter Kit

○ This was a reasonably priced FPGA and had all the specs we were
looking for.

● Libero SoC V11.9
○ This is a tool that MicroSemi offers for free to use on all their FPGA

products
● Powecast P2110B

○ A 915 MHz RF energy harvester that will be used to provide power to
downstream devices

● Lab Instrumentation
○ Includes measurement devices such as multimeters and

oscilloscopes used for testing and analysis
● Code Composer Studio 9.2.0

SDMAY20-38 19

○ IDE with microcontroller support allowing us to upload software to
MSP430

5.3FUNCTIONAL/NON-FUNCTIONAL TESTING

Test ID: Test Type: Grouping: Given/When/Then Verifie
d?

Additional
Comments

 Functional: Unit Tests:

F-U-101 Given an RF Harvester
Unit, When running, Then
it shall produce the power
as specified in our power
analysis.

 Add % error
when better
defined...

F-U-102 Given our sound
classification software
(training set and input),
When the program
executes, Then the input
sound shall be accurately
classified into the
appropriate category.

 See Test No
203 & 204
for Accuracy
Percentage

F-U-103 Given the results of
computation in memory,
Then the results shall be
exportable by an offline
UART.

F-U-104 Given a microcontroller,
When a sound is given as
an input to the
microcontroller, Then the
software embedded on the
microcontroller shall output
a classification for the input
sound.

F-U-105 Given an FPGA, When a
sound classification result
sent as an input to the

SDMAY20-38 20

FPGA, Then the result
shall be stored in the
FPGA’s memory.

 Integration
Tests:

F-I-200 Given an FPGA and a
Microcontroller, When the
microcontroller has
executed it’s computation,
Then the result shall be
sent as an input to the
FPGA.

F-I-201 Given an RF Harvester
and an FPGA, When the
RF Harvester is running,
Then the RF Harvester
shall apply sufficient power
to keep the FPGA running
in steady, computation, and
data storage states.

 System
Tests:

F-S-300 Given an iFPGA system,
Then it should not be
placed under mild/extreme
weather conditions but
rather kept at room
temperature.

F-S-301 Given an iFPGA system,
When and IF the FPGA
shuts off mid-computation,
Then the FPGA should not
need to be reprogrammed
to continue the
computation.

F-S-302 Given an iFPGA system,
When the FPGA is toggled
on->off->on, Then the

SDMAY20-38 21

computation should
continue run as well as
data transfer once turned
on again.

 Acceptance
Tests:

F-A-400 Given an iFPGA system,
Then sufficient
documentation shall be
provided enabling the user
to fix and understand the
entire system.

 Non-Functi
onal Tests

Performance
Tests:

NF-P-500 Given the system’s FPGA
(Igloo Nano) , Then it
should not run above ___
Watts

NF-P-501 Given the system’s FPGA
(Igloo Nano) , Then the
voltage applied to the
device shall not exceed its
maximum threshold (based
on it’s datasheet).

NF-P-502 Given the system’s
microcontroller (MSP430) ,
Then the voltage applied
to the device shall not
exceed its maximum
threshold (based on it’s
datasheet).

NF-P-503 Given our sound
classification software,
Then the Training
Accuracy shall be a
minimum of 50%.

SDMAY20-38 22

NF-P-504 Given our sound
classification software,
Then the Testing Accuracy
shall be a minimum of
50%.

5.4PROCESS
Requirements are verified by the Requirement Verification Matrix specified in
section 5.3.

The general flow of testing will follow the diagram below.

Test Plan Flow Diagram

Figure 5.1 Test plan flow diagram

SDMAY20-38 23

6. Closing Material

6.1 CONCLUSION

So far, we have gotten through most of the thorough description of the design.
Our software can do sound classification, we know which part of the software we
are going to accelerate, and we have an understanding of how we are going to
attach it to our embedded hardware. On the electrical side, we have done power
analysis for the FPGA as well as done the number crunching so we know what
electrical components we are going to buy. For the Embedded System, we have
picked out a board as well as the ip-blocks we are going to use when programming,
and the channels of communication between devices and to external devices. Our
goal for this project is to create PCB- based battery-less FPGA platform that can
accelerate software computations. Most of this goal is achieved in simply making
the physical device and programming it. Making a PCB is one of the tasks to be
taken care of in the beginning of the semester. The battery-less capability should
be feasible based on our power calculations but it may need some tweaking as we
learn more about the software. The acceleration will be feasible as long as we give
ourselves enough time to test and make tweaks to our design as necessary. Since
we won’t know if the part of the software we choose to accelerate will actually
accelerate, it is important that we start the next semester running. We are
finishing the semester with an in-depth analysis of how to integrate the individual
components of the project. The best way to make sure this whole design can
actually accelerate a computation is to build it as quickly as possible up front so in
the case the software doesn’t actually accelerate, we have time to figure out why
and make appropriate changes to our design so that it does.

6.2 REFERENCES

Embedded System for Acquisition and Enhancement of Audio Signals
Paper:

https://ieeexplore.ieee.org/document/7763589

Microsemi Libero SoC Documentation:

SDMAY20-38 24

https://www.microsemi.com/product-directory/libero-soc/5507-libero-soc-v11-9-ar
chive#documents

Efficient Processing of Deep Neural Networks: A Tutorial and Survey

https://arxiv.org/pdf/1703.09039.pdf

6.3 APPENDICES

N/A

SDMAY20-38 25

